Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic Path Order [19].
Precedence:
trivial